Leyla Esfandiari, Ph.D. Associate Professor Biomedical Engineering University of Cincinnati Email: Leyla.esfandiari@uc.edu Website: esfandiari-lab.com

Ph.D. , Bioengineering University of California Los Angeles, Los Angeles, CA	2014
M.Sc. , Biomedical Engineering University of California Irvine, Irvine, CA	2008
B.Sc. , Electrical Engineering California State University Long Beach, Long Beach, CA	2006
Professional Experience	
Associate Professor (Tenured) Biomedical Engineering Electrical and Computer Engineering Environmental and Public Health Sciences University of Cincinnati	2021- Pres
Faculty of Medical Science Training Program University of Cincinnati	2020-Pres
Faculty of Stem Cell and Organoid Medicine (CuSTOM) Cincinnati Children's Hospital Medical Center	2019-Pres
Assistant Professor Electrical Engineering and Computer Science Biomedical Engineering University of Cincinnati	2015- 2021
Research Scientist Biohybrid Microsystems Laboratory University of California Los Angeles	2009- 2014
Research Scientist California Nano-Systems Institute University of California Los Angeles	2010- 2011
Visiting Fellow Department of Orthopedic Surgery University of California Los Angeles	2009- 2010

Process Engineer Applied Medical Co. Rancho Santa Margarita, CA			2009
Research Associate Micro-biomechanics Laboratory and neuro-pathology Laboratory University of California Irvine			2008
	Honors and Awards		
	NIH Maximizing Investigator's Research Award (MIRA)		2023
•	University of Cincinnati CEAS Distinguished Research Award		2023
•	1 st Place Abstract Presentation in <i>IEEE Micro and Nanotechnology in Medicine</i>		2022
†	National Science Foundation CAREER Award		2021
\$	University of Cincinnati CEAS Distinguished Research Award		2020
•	University of Cincinnati CEAS Faculty Development Award		2019
•	William E. Restemeyer Teaching Excellence Award		2017
\$	University of Cincinnati CEAS Faculty Development Award		2016
•	2 nd Place in IEEE Micro and Nanotechnology in Medicine Paper Competition		2016
•	UCLA Graduate Division Unrestricted Fellowship	2009-	2014
•	National Science Foundation Fellowship on Cell Mechanics		2007
•	UC Irvine Kleist Fellowship	2006-	2007
\$	Final Candidate of Rhodes Scholarship		2006
•	Academic Achievement Award of Professors and Scholars of Persian Heritage		2006
•	Boeing Scholarship	2004-	2006
	Grant Support		

Active Grants

 "Nanoelectronics to study exosome circuitry and their role in neuroregeneration" <u>National</u> <u>Institute of Health (NIH), NIGMS, Maximizing Investigators' Research Award (MIRA) (R35)</u>, PI: Esfandiari. L; \$2,005,468 Aug 2023-Jul 2028 [Status: *Active*].

- "CAPSTONE: Central and Peripheral Stroke Inflammation with Exosomes", <u>National Institute</u> of <u>Health (NIH)</u>, <u>NINDS</u> (R01)/1R01NS128425-01, PI: Walsh, K, Co-I: Esfandiari. L;
 \$3,819,665 Jul 2022-Jun 2027 [Status: *Active*].
- * "Label-free electrokinetic micro-devices for rapid isolation and detection of circulating small extracellular vesicles", <u>National Science Foundation (NSF) CAREER Award 2021</u>, ECCS-2046037, **PI: Esfandiari. L; \$500,000** Jan 2021-Dec 2026 [Status: *Active*].
- * "Next Generation Smart Scaffolds for Regenerative Peripheral Nerve Therapeutics", <u>Department of Defense (DoD)</u> Defense Medical Research and Development Program (DMRDP) DM 190692, PI: Harris. G, Co-PI: Esfandiari. L, Co-I: Cushion, M; \$500,000 Mar 2021-Feb 2024 [Status: *Active*].

Completed Grants

- "EAGER: A Novel Lab-on-a-Chip Concept for Characterization of Nanovesicles based on their Dielectric Properties", <u>National Science Foundation (NSF) EAGER</u>, ECCS-2020112, PI: Esfandiari. L; \$99,452, May 2020- Apr 2022 [Status: *Completed*].
- "Detection and characterization of cell type specific extracellular vesicle in obesity-driven hepatocellular carcinoma", <u>National Institute of Health (NIH)</u>, <u>National Cancer Institute (NCI)</u> (R21)/ PAR-16-277, PI: Nakamura. T, **Co-PI: Esfandiari. L**; **\$389,905**, Jul 2019-Jun 2021 [Status: *Completed*].
- "Phase I: Detection of environmental DNA (eDNA) to determine the Hellbender distribution", <u>Ohio Department of Transportation</u>/2017-04, PI: Esfandiari. L, Co-PI: Wendell. D; \$98,000, Oct 2016-Apr 2017 [Status: Completed].
- "Phase II: Detection of environmental DNA (eDNA) to determine the Hellbender distribution", <u>Ohio Department of Transportation</u>/2018-04, PI: Esfandiari. L, Co-PI: Wendell. D; \$660,000, Feb 2018- Feb 2021 [Status: Completed].
- * "RET Site: Engineering Design Challenges and Research Experiences for Secondary and Community College Teachers", <u>National Science Foundation</u>/ Award Number: 1710826, PI: Kupferle. M, Co-PI: Esfandiari. L; \$598,705, for summer 2019, 2020 [Status: Completed].

Pending Grants

 "Developing multi-cue piezoelectric PVDF-TrFE biomaterials for peripheral nerve repair" <u>National Institute of Health (NIH) R01</u>, PI: Harris. G, Co-I: Esfandiari. L, Co-I: Cushion. M;
\$3,005,802 Jan 2024-Dec 2029 [Status: *Pending*].

Peer Reviewed Journal Publications

Underlined names are Esfandiari students * represents the corresponding author https://scholar.google.com/citations?user=CmOs-WIAAAAJ&hI=en

[1] <u>H. M. Polling</u>, A. Singh, G.W. Fisher, K. Thorner, P.Chaturvedi, M.R. Batie, T. Hausfeld, N. Brown, **L. Esfandiari**, T. Takebe, M. A. Helmrath^{*}, M.M. Mahe^{*}, *"Engineering Transplantable Large-Scale Innervated Human Gastrointestinal Organoids"*; *Nature Medicine (Under Review)*

[2] <u>H. M. Poling</u>, N. Sundaram, G.W. Fisher, A. Singh, J. R Shiley, V. Govindarajah, A. R. Cortez, S. Ménoret, I. Anegon, M. Kasendra, **L. Esfandiari**, J. M. Wells, C. N. Mayhew, T. Takebe, M. M. Mahe, M. A. Helmrath^{*}, *"Human pluripotent stem cell derived organoids regenerate damaged bowel in vivo"; Cell Stem Cell (Under Review)*

[3] <u>M. Sharma</u>, <u>M. Sheth</u>, <u>H.M. Poling</u>, D. Kuhnell, S.M. Langevin, **L. Esfandiari***, "*Multiparametric Analysis of Small Extracellular Vesicles Purified by a Rapid and Label-free Lab on a Chip Device*"; *Scientific Reports (Under Review)*

[4] <u>Y. Izhiman</u>, **L. Esfandiari***, "The emerging role of extracellular vesicles and exogeneous stimuli on molecular mechanisms of peripheral nerve regeneration"; Journal of Neuroscience Research (Under Review)

[5] J. A. Westphal, A. E. Bryan, <u>M. Krutko</u>, **L. Esfandiari**, S. C. Schutte, G. M. Harris^{*}, "*Innervation of an Ultrasound-Mediated PVDF-TrFE Scaffold for Skin Tissue Engineering*"; *Biomaterials (Under Review)*

[6] A. E. Bryan, <u>M.Krutko</u>, J. Westphal, <u>M. Sheth</u>, **L. Esfandiari***, G.M. Harris*, "Ultrasound Activated Piezoelectric PVDF-TrFE Scaffolds Improve Cell Proliferation for Tissue Engineering Applications"; Military Medicine (In Press)

[7] J. Pounders, E.J. Hill, D. Hooper, X. Zhang, J. Biesiada, D. Kuhnell, H. L. Greenland, **L. Esfandiari**, E. Timmerman, F. Foster, C. Wang, K. Walsh, R. Shatz, D. Woo, M. Medvedovic, S. Langevin, R. Sawyer^{*}, "MicroRNA Expression within Neuronal-derived Small Extracellular Vesicles in Frontotemporal Degeneration"; *Medicine*[®], 2022, DOI: 10.1097/MD.00000000030854

[8] <u>L. Shi</u>, **L. Esfandiari***, "A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes", *PLoS ONE*, 2022, DOI:10.1371/journal.pone.0270844

[9] J. A. Orkwis, <u>A. Wolf, Z. J. Mularczyk</u>, A. Bryan, C.S. Smith, R. Brown, <u>M. Krutko</u>, A. McCann, R.M. Collar, G.M Harris*, **L. Esfandiari***, "Mechanical stimulation of a bioactive, functionalized PVDF-TrFE Scaffold provides electrical signaling for nerve repair applications" *Biomaterials Advances*, 2022, DOI: 10.1016/j.bioadv.2022.213081.

[10] <u>M. Sheth</u>, **L. Esfandiari***, "Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression", *Frontiers in Oncology*, 2022, DOI: 10.3389/fonc.2022.846917

[11] <u>Y. Zhang</u>, K. Murakami,V.J. Borra, M.O. Ozen, U. Demirci, T. Nakamura , **L. Esfandiari***, "A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties", *Biosensors*, 2022, DOI: 10.3390/bios12020104

[12] <u>L. Shi</u>, **L. Esfandiari***, "Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy – A review". *Electrophoresis*, 2021, DOI: 10.1002/elps.202100234

[13] <u>L. Shi</u>, **L. Esfandiari***, "An electrokineticaly-driven microchip for rapid entrapment and detection of nanovesicles", *Micromachines*, 2021, 12(1),11.

[14] J. Orkwis, <u>A. Wolf, S. M. Shahid</u>, G. Harris*, **L. Esfandiari***, "Development of a Piezoelectric PVDF-TrFE Fibrous Scaffold to Guide Cell Adhesion, Proliferation, and Alignment" *Macromolecular Bioscience*,2020, https://doi.org/10.1002/mabi.202000197.

[15] <u>L. Shi</u>, D. Kuhnell, V. J. Borra, S. M. Langevin, T. Nakamura, **L. Esfandiari**^{*}, " Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device" *Lab on a Chip*, 2019,19(21), pp 3726-3734.

[16] <u>Y. Zhang</u>, <u>A. Kaynak</u>, T. Huang, **L. Esfandiari**^{*}, "A rapid bioanalytical tool for detection of sequence-specific Circular DNA and Mitochondrial DNA point mutations" *Analytical and Bioanalytical Chemistry*, 2019, 411(10), pp 1935-1941.

[17] <u>Y. Zhang</u>, <u>A. Rana</u>, **L. Esfandiari**^{*}, "Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers" *Analyst*, 2018, 143 (13), pp 2971-2991.

[18] <u>L. Shi, A. Rana</u>, **L. Esfandiari**^{*}, "A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors" *Scientific Reports*, 2018, 8 (6751).

[19] <u>Y. Zhang</u>, <u>A. Rana</u>, Y. Stratton, M. F. Czyzyk-Krzeska, **L. Esfandiari**^{*}, "Sequence-specific detection of microRNAs related to Clear Cell Renal cell carcinoma at fM concentration by an electroosmotically driven nanopore-based device" *Analytical Chemistry*, 2017, 89 (17), pp 9201–9208.

[20] S. Ventura*, J. Heikenfeld, <u>T. Brooks</u>, **L. Esfandiari**, S. Boyce, Y. Park, G. B. Kasting, "Cortisol extraction through human skin by reverse iontophoresis" *Bioelectrochemistry*, 2017, (114) pp 54-60.

[21] **L. Esfandiari**, S. Wang, S. Wang, A. Banda, G. Kocharyan, M. Lorenzini, H.G. Monbouquette^{*}, J.J. Schmidt^{*}, "PCR-independent detection of bacterial species-specific 16S rRNA at 10fM by a pore-blockage sensor "*Biosensors*, 2016, 6(37) pp 1-10.

[22] **L. Esfandiari**, M. Lorenzini, G. Kocharyan, H.G. Monbouquette^{*}, J.J. Schmidt^{*}, "Sequence-specific DNA detection at 10fM by electromechanical signal transduction" *Journal of Analytical Chemistry*, 2014, 86 (19), pp 9638-9643.

[23] **L. Esfandiari**, H. G. Monbouquette^{*}, J. J. Schmidt^{*}, "Sequence-specific nucleic acid detection from binary pore conductance measurement" *Journal of American Chemical Society (JACS)*, 2012, 134 (38), pp 15880–15886.

[24] **L. Esfandiari**, M. Paff, W. C. Tang^{*}, "Initial studies of mechanical compression on neurogenesis with neonatal neural stem cells" *Nanomedicine: Nanotechnology, Biology and Medicine*, 2012, 8(4), pp 415–418.

Manuscript Journals Under Preparation

- [1] Krutko et al., "Quantitative analysis of biohybrid piezoelectric platform for tissue regeneration" Under preparation (75% completed)
- [2] Poling et al., "Integration of piezoelectric nanofibers with gastrointestinal organoids for control stimulation Under preparation (85% completed)
- [3] Sheth et al., "Electro-mechanical Feedback Loop in Cancer Microenvironment" Under preparation (50% completed)

Invention Disclosures

- L. Esfandiari, "Using electrokinetic forces to manipulate suspended particles", US Patent No: 11,559,817.
- ▲ L. Esfandiari, "Method of Characterizing Exosomes" Patent Application Serial No. 62/838,015 US patent pending, filed on 04/24/2019.
- ▲ L. Esfandiari, "An electrokinetically-driven microchip for rapid extraction and detection of nanovesicles in situ" Patent Application provisional 2020-093, filed on 03/17/2020.
- ▲ L. Esfandiari, G. Harris, "Bioactive Smart Scaffold for Regenerative Medicine" Patent Application Serial No. 62/915035 US patent pending, filed on 10/15/2019.

Conference Proceedings

- [1] <u>M. Sheth, M. Sharma, L. Shi, Y. Zhang</u>, L. Esfandiari*, "A Label-free Microelectronic Device for Purification and Characterization of Extracellular vesicles" *IEEE EMBS Micro and Nanotechnology in Medicine*, Dec 5th-9th, 2022- Kapolei, HI.
- [2] L. Shi, D. Mahee, L. Esfandiari*, "An electrical impedance microchip for characterization of extracellular vesicles" *Miniaturized systems for chemistry and life sciences (MicroTAS)*, Oct 22nd-26th, 2021-Palm Spring California.
- [3] Y. Zhang, M. F. Czyzyk-Krzeska, L. Esfandiari*, "Nanopore-based sensor for sequencespecific microRNA detection" *Miniaturized systems for chemistry and life sciences* (*MicroTAS*), Oct 22nd-26th, 2017-Savannah Georgia.
- [4] M. Ghobadi, <u>Y. Zhang</u>, A. Rana, E.T. Esfahani, L. Esfandiari*, "Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate nanopore-based sensor" *IEEE EMBS*, Aug 16th-20th, 2016-Orlando Florida.
- [5] Y. Zhang, L. Esfandiari*, "Simultaneous detection of multiple charged particles using a borosilicate nanopore-based sensor", *IEEE Nano*, Aug 22nd-25th, 2016-Sendai, Japan.

- [6] Y. Zhang, L. Esfandiari*, "Sequence-specific MicroRNA detection by induced electroosmosis flow inside a borosilicate pore", IEEE EMBS Micro and Nanotechnology in Medicine, 2016-Waikoloa, HI.
- [7] A. M. Yorita, B. Koo, L. Esfandiari, J.J. Schmidt*, H.G. Monbouquette*, "Sequence-specific nucleic acid detection based on blockade of a nanopore in a thin glass membrane" *American Institute of Chemical Engineers* (AIChE), Nov 8th-13th, 2015-Salt Lake City, UT.
- [8] L. Esfandiari, J.J. Schmidt*, H. G. Monbouquette*, "PCR-Independent, reagent-Free, binarymode nucleic acid detection" 2012 American Institute of Chemical Engineers (AIChE), Oct 28th-Nov 3rd, 2012-Pittsburgh, PA.
- [9] L. Esfandiari, W.C. Tang*, "PDMS stretchable platforms for studies of mechanical compression on neurogenesis" 2010 IEEE International Conference of Nano/Molecular Medicine & Engineering, Dec 5th-9th, 2010-Hong Kong, China.

Abstracts

[1] <u>M. Sheth, M. Sharma, H.M. Poling</u>, D. Kuhnell, S.M. Langevin, L. Esfandiari, "Multiparametric Analysis of Small Extracellular Vesicles Purified by a Rapid and Label-free Lab on a Chip Device", *2023 Biomedical Engineering Society, Seattle, Washington*.

[2] <u>M. Sheth, M. Sharma, H.M. Poling</u>, L. Esfandiari, "Multiparametric Analysis of Small Extracellular Vesicles Purified by a Rapid and Label-free Lab on a Chip Device", 2023 Society for Laboratory Automation and Screening, San Diego, California.

[3] <u>H. M. Polling</u>, A. Singh, G.W. Fisher, K. Thorner, P.Chaturvedi, M.R. Batie, T. Hausfeld, N. Brown, L. Esfandiari, T. Takebe, M. A. Helmrath, M.M. Mahe, "Engineering Transplantable Large-Scale Innervated Human Gut for Transplantation", *2023 Biomedical Engineering Society, Seattle Washington*.

[4] A. Bryan, <u>M. Krutko</u>, C. Smith, L. David, L. Esfandiari, G. M. Harris, "Remote Stimulation of PVDF-TrFE Scaffold directs Fibroblast and Schwann Cell Phenotype", *2023 Biomedical Engineering Society, Seattle Washington.*

[5] J. A. Westphal, J. Klug, S. Davidson, L. Esfandiari, S. Shutte, G. M. Harris, "Ultrasound Stimulation Promotes Innervation of a PVDF-TrFE Scaffold for Skin Tissue Engineering", *2023 Biomedical Engineering Society, Seattle Washington.*

[6] <u>M. Krutko</u>, A. Bryan, <u>M. Sheth</u>, <u>Y. Izhiman</u>, <u>H.M. Polling</u>, G. Harris, L. Esfandiari, "Remote shockwaves to externally activate piezoelectric PVDF-TrFE nanofibers for peripheral nervous system regeneration" *2023*, *67th Biophysical Society Meeting*, *San Diego California*.

[7] <u>M. Sheth</u>, <u>M. Krutko</u>, M. Lehn, V. Takiar, T. Wise-Draper, L. Esfandiari, "Alternation of membrane potential of head and neck cancer cells using a piezoelectric nanofiber interface" *2023*, *67th Biophysical Society Meeting, San Diego California*.

[8] A. Bryan, J. Orkwis, <u>A. Wolf</u>, <u>Z. Mularczyk</u>, <u>M. Krutko</u>, L. Esfandiari, G. M. Harris, "Functionalization of PVDF-TrFE with decellularized ECM directs Schwann Cell Phenotype" *2022 Biomedical Engineering Society, San Antonio Texas.* [9] <u>M. Sheth</u>, <u>M. Krutko</u>, M. Lehn, A. Bryan, G. M. Harris, V. Takiar, T. Wise-Draper, L. Esfandiari, "Electrical stimulation of head and neck cancer cells using a piezoelectric nanofiber interface" *2022 Biomedical Engineering Society, San Antonio Texas.*

[10] <u>Z.J. Mularczyk</u>, <u>M. Krutko</u>, A. Bryan, J. Orkwis, G.M. Harris, L. Esfandiari, "Development and Characterization of a piezoelectric nanofiber conduit for nerve regeneration" *2022 Biomedical Engineering Society, San Antonio Texas.*

[11] J. A. Westphal, J. Klug, <u>Z.J. Mularczyk</u>, L. Esfandiari, S. Schutte, G. M. Harris, "Development of an innervated, PVDF-TrFE scaffold for skin tissue engineering" *2022 Biomedical Engineering Society, San Antonio Texas.*

[12] J. Orkwis, <u>A. Wolf, Z. Mularczyk</u>, C. Smith, L. Esfandiari, G.M. Harris, "Functionalization of a bioactive, piezoelectric fibrous scaffold for nerve repair" *2021 Biomedical Engineering Society, Orlando Florida.*

[13] <u>Y. Zhang, L. Shi,</u> L. Esfandiari, "Biophysical Characterization of Exosomes based on their unique Dielectric Properties" *2020 Biophysical Society, San Diego CA*

[14] <u>Y. Zhang, L. Shi,</u> L. Esfandiari, "A rapid and label-free micro-electronic device for purification and characterization of extracellular vesicles from biofluids" *2020 Microfluidics for Hematology Workshop Chicago IL.*

[15] J. A. Orkwis, <u>A. Wolf, S. M. Shahid</u>, L. Esfandiari, G.M. Harris, "Development of a bioactive, PVDF-TrFE fibrous scaffold for peripheral nerve regeneration" *2020 Biomedical Engineering Society Meeting, Virtual meeting.*

[16] <u>L. Shi</u>, L. Esfandiari, "Rapid and label-free isolation of exosomes from biofluids utilizing a novel insulator based dielectrophoretic (iDEP) device" *2020 International Society of Extracellular Vesicles (ISEV) Philadelphia PA.*

[17] <u>Y. Zhang</u>, <u>L. Shi</u>, L. Esfandiari, "Biophysical characterization of exosomes based on their unique dielectric properties" *2020 Biophysical Society 64nd Annual Meeting, San Diego, CA.*

[18] J. A. Orkwis, <u>A. Wolf</u>, <u>A. Kabra</u>, L. Esfandiari, G.M. Harris, "Development of a bioactive, piezoelectric biomaterial for use in nerve regeneration" *2019 Biomedical Engineering Society Meeting, Philadelphia, PA*.

[19] <u>Y. Zhang, L. Shi</u>, L. Esfandiari, "Characterization of exosomes based on their unique dielectric properties by a novel electrical impedance measurement system" *2019 Biomedical Engineering Society Meeting, Philadelphia, PA*.

[20] <u>Y. Zhang</u>, E.S.B. Salem, T. Nakamura, L. Esfandiari, "Characterization of exosomes based on their unique dielectric properties by a novel electrical impedance measurement system" *2019 International Society of Extracellular Vesicles (ISEV) Kyoto, Japan.*

[21] <u>Y. Zhang</u>, <u>A. Rana</u>, M.F. Czyzyk-krzeska, L. Esfandiari, "Sequence-specific detection of microRNA at fM concentration with nanopore-based sensor", *2018 Biophysical Society 62nd Annual Meeting San Francisco, CA.*

[22] <u>L.S hi</u>, <u>A. Rana</u>, L. Esfandiari, "Particle entrapment by an integrative insulator based dielectrophoresis (iDEP) and nanopore device", *2017 Biomedical Engineering Society Annual Meeting, Phoenix, AZ.*

[23] <u>L. Shi</u>, <u>A. Rana</u>, L. Esfandiari, "A new low-voltage insulator-based dielectrophoresis (iDEP) device for nanoparticles entrapment", 2017 *2nd Microfluidic Congress, Philadelphia, PA.*

[24] <u>L. Shi</u>, <u>A. Rana</u>, L. Esfandiari, "A dielectrophoretic nanopore device with spatiotemporal resolution for microvesicles entrapment and quantification near living cells", 2017 *International Society of Extracellular Vesicles, Toronto, Canada.*

[25] <u>Y. Zhang</u>, **L. Esfandiari**^{*}, "Sequence-specific MicroRNA detection by induced electroosmosis flow inside a borosilicate pore", 2016 Micro and Nano-technology in Medicine workshop, Boston, MA.

Invited Talks/ Seminars

- ▲ May 19th, 2023, **Panelist** "Single EV characterization (molecular and biophysical)" International Society of Extracellular Vesicles (ISEV 2023).
- ▲ March 25th, 2022, "Nano-biosensors for continuous monitoring of cellular activities in 3D Organoids" Frontiers in Stem Cell & Organoid Medicine Symposium.
- ▲ July 27th, 2021, "Micropipette Dielectrophoretic Device for Rapid Purification of Circulating Small Extracellular Vesicles" Keynote Speaker, Dielectrophoresis DEP Conference.
- ▲ May 3rd, 2021, "Nanobiosensors and actuators for early cancer diagnosis and regenerative medicine" Department of Biomedical Engineering, Pennsylvania State University.
- ▲ March 5th, 2021, "*Electrokinetically Driven Micro-devices for Early, Minimally-invasive Cancer Diagnosis*" Department of Biomedical Engineering, University of Southern California.
- ▲ March 3th, 2021, "Nanoelectronics for precise sensing and actuating with application in early cancer diagnosis and regenerative medicine" Department of Biomedical Engineering, University of Buffalo.
- ♠ November 4th, 2020, "*Electrokinetically driven micro-pores for minimally-invasive cancer diagnosis*", Department of Bioengineering, Northeastern University, Virtual Presentation.
- ▲ September 23rd, 2020, "Lab-on-a-Chip device for extraction of small extracellular vesicles from biofluids", Extracellular Vesicles Research Forum, Virtual Presentation.
- ▲ July 8th, 2020, "On-chip electrokinetically driven devices for minimally-invasive cancer diagnosis", Microsystems and Nanoengineering Young Scientist Forum, Virtual Presentation.
- ▲ February 18th, 2020, "On-chip electrokinetically driven devices for minimally-invasive cancer diagnosis" Department of Electrical Engineering, UC San Diego, San Diego, CA, USA.
- ✤ February 17th, 2020, "Biophysical Characterization of Exosomes Based on Their Unique Dielectric Properties", Biophysical Society Meeting, San Diego, CA, USA.

- ▲ July 9th, 2019, "An Electrokinetically Driven Micro-Device for Rapid Purification and Characterization of Exosomes from Body fluids", Micro-and Nanotechnologies for Medicine Workshop: Emerging Frontiers and Applications, UCLA, Los Angeles, CA, USA.
- ▲ April 26th, 2019, "Characterization of Exosomes based on their unique dielectric properties by a novel electrical impedance measurement system", International Society of Extracellular Vesicles, ISEV meeting, Kyoto, Japan.
- ▲ September 13th, 2018, "An electrokinetic nanofluidic device for rapid and label-free isolation of exosomes from biofluids", 3rd Microfluidic Congress, San Francisco, California, USA.
- September 5th, 2018, "3D smart scaffolds for stem-cell based regenerative medicine", Center for Stem Cell & Organoid Medicine (CuSTOM) Seminar, Cincinnati Children's Hospital, Cincinnati, OH.
- May 4th, 2018, "Rapid isolation of artificial liposomes and exosomes extracted from plasma of healthy donors utilizing a novel insulator-based dielectrophoretic device", International Society of Extracellular Vesicles, 2018 ISEV meeting, Barcelona, Spain.
- ▲ December 11th, 2017, "*Electrokinetic micro-devices for rapid, label-free, and highly sensitive detection of circulating cancer biomarkers*", Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- ▲ December 14th, 2017, "*Electrokinetic micro-devices for rapid, label-free, and highly sensitive detection of circulating cancer biomarkers*", Victoria University of Wellington, Callaghan Institute, Wellington, New Zealand.
- ▲ September 18th, 2017, "Electrokinetic nano/micro-devices for rapid, label-free, and highly sensitive detection of circulating cancer biomarkers", Department of Electrical Engineering, University of British Colombia (UBC), Vancouver, Canada.
- ▲ June 22nd, 2017, "Nanopore-based diagnostics for high-throughput isolation and sensitive detection of cancer-related circulating biomarkers", Department of Micro and Nanotechnology, Technical University of Denmark (DTU), Copenhagen, Denmark.
- May 4th, 2017, "*Micro/nano-scaled electroanalytical tools with spatiotemporal resolution for entrapment and quantification of circulating biomarkers*", New Technologies for Molecular Epidemiology Workshop, Department of Environmental Health, University of Cincinnati, Cincinnati, OH.
- ✤ February 7th, 2017, "Nano-bioanalytical tools for isolation and detection of minimally invasive cancer biomarkers", Molgen Seminar Series, Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati. Cincinnati, OH.
- ▲ January 5th 2017, "Nanopore sensors: From cancer biomarkers screening to environmental DNA monitoring", 2nd Annual UC Sensor Community Retreat: Innovation, Technology and Workforce, Cincinnati, OH.
- November11th 2016, "Nanopore devices: From sequence-specific nucleic acid detection to subcellular structures entrapment", Department of Bioengineering, University of Illinois at Chicago, Chicago, IL.

- August 23rd 2016, "Simultaneous detection of multiple charged particles using a borosilicate nanopore-based sensor", 16th International Conference on Nanotechnology (IEEE-Nano), Sendai, Japan.
- September 22nd 2014, "Biomedical Micro-devices: effects of mechanical compression on neurogenesis; sequence-specific nucleic acids detection with high sensitivity, specificity and simplicity", European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- September 18th 2014, "Label-free, PCR independent and rapid nanopore-based biosensors toward point-of-care molecular diagnostics", School of engineering and applied science, University of Cincinnati, Cincinnati, OH.
- ▲ March 28th 2014, "Nanopore based biosensors for rapid, point-of- care and PCR independent sequence-specific nucleic acid detection", Illumina Inc., San Diego, CA.
- ▲ March 25th 2014, "*PCR-free detection of sequence-specific nucleic acids using a nanopore based biosensor*", Bioengineering and Soft Matter Seminar Series, Department of Bioengineering, UCLA, Los Angeles, CA.
- March 3rd 2014, "Biomolecular lab-on-a-chip devices: High throughput, hand-held sensors for low-cost, point of care diagnostics", Department of Life Sciences, University of Warwick, Warwick, UK.
- ▲ Jan 30th 2014, "Nanopore based biosensors, a novel approach for Nucleic Acid Detection", Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, New York, NY.

Teaching Experience

University of Cincinnati (2015- 2023):

Functional Tissue Engineering (BME 5130/6030), 3 credits, Lecture-based.

Dual undergraduate and graduate elective course; this course describes the goals and rationale for tissue engineering. Principles of cells and cell-matrix interactions, cell-derived products (proteins) and cell regulation. Bioreactors and scaffolds are discussed in depth based on the targeted tissue.

Engineering Electromagnetics (EECS 3080), 4 credits, Lecture-based.

Undergraduate core course; Definition of field vectors. Coulomb's law: Fields and potentials; Magnetostatics: Biot-Savart law, Ampere's law. Electric and magnetic properties of materials. Dynamical fields: Faraday's and Lenz' laws, displacement current.

Biomicrofluidic Systems (EECS 5178/6078C), 4 credits, Laboratory-based.

Dual undergraduate and graduate elective course; Principles of microfluidic systems design and fabrication is described. The labs are focused on development of a passive microfluidic mixer and active microfluidic sorting systems.

Biomedical Microsystems (EECS 5107/6007), 3 credits, Lecture-based.

Dual undergraduate and graduate core course; Principles of biomedical microsystems including medical instrumentation, microsurgical tools, nucleic acid structure and analysis, cell structure and culture, biosensors, point-of-care systems, and microfluidic lab-on-a-chip.

Biochips and Lab-on-a-chip (EECS 7026), 3 credits, Lecture-based.

Advanced graduate course; Fundamentals of micro and nano fabrication of biochips and lab-ona-chips, on-chip biochemical detection methods, micro/nano fluidics, basic components of lab-ona-chips, integration of lab-on-a-chips, and micro total analysis systems (µTAS).

Engineering Foundations (ENG 2010), 2 credits, Project-based.

Undergraduate course; Introduction to engineering and engineering technology as disciplines and occupations. Through this course, students utilize their math, science, and technology skills to solve engineering problems.

Teaching Associate, University of California Los Angeles (2011- 2014):

<u>Nanopore Sensing</u>, BioE (C131/231), 3 credits, Lecture-based. Dual undergraduate and graduate course; Principles and physics of Nanopore sensing technique for the next generation DNA sequencing.

Biophysics, Channels and Membranes, BioE (C106/206), 3 credits, Lecture-based.

Dual undergraduate and graduate core course; Principles of cell membrane biophysics, Ion channels, and Action Potentials.

<u>Cell and Molecular Biology Laboratory</u>, BioE (C167), 3 credits, Laboratory-based. Undergraduate core course; Principles of mammalian cell culturing, cell passaging, cell counting and microscopy.

Teaching Assistant, University of California Irvine (2007- 2008):

<u>Design Biomaterials</u>, (BME-111), 3 credits, Lecture-based. Undergraduate core course; design of new biocompatible materials and smart materials for tissue engineering and implantable devices.

<u>Cell and Molecular Biology</u>, (BME-50A), 4 credits, Lecture-based. Undergraduate core course; Introduction to cell and molecular biology for engineers.

<u>Biomedical Signal and Systems</u>, (BME-130), 3 credits, Lecture-based. Undergraduate core course; Introduction to signal and systems in biomedical applications.

<u>Computer Aided Design</u>, (MAE-52), 3 credits, Laboratory-based. Undergraduate core course in Mechanical Engineering; Introduction CAD and SolidWorks.

Professional Service

<u>University</u>

• Committee member: University Research Safety Council

2022-23

	Search Committee member: Faculty hiring in Biomedical Engineering	2022
٠	Biomedical Electronics & Computing minor Advisor	2022-23
٠	Biomedical Engineering Graduate Students Committee member	2022-23
٠	Search Committee member: Faculty hiring in Biomedical Engineering	2020
٠	College of Engineering and Applied Science: Academic Standards Committee	2020-21
٠	College of Engineering and Applied Science: Faculty Development Committee	2017- 18
٠	Member of: Engineering Research Center (ERC) Clean Room Facility	2017- 23
	Search Committee member: Faculty Hiring in Bioelectronics, Electronic Circuits, Application System Integrated Circuits	2017
٠	Search Committee member: Ohio Eminent Scholar in NanoBio-Devices	2016
<u>A</u>	ademic Community	
٠	Editorial Board Member: Scientific Reports	2023
٠	Guest Editor of Clinical Potential of Extracellular Vesicles: Scientific Reports	2023
٠	National Science Foundation Panelist: Engineering of Biomedical Systems	2022
٠	Organizer Committee member: International Society for Stem Cell Research	2021
٠	Editorial Board: Micromachines Journal	2020
٠	Reviewer: IEEE International Conference on Bioinformatics and Bioengineering	2020
٠	Biosensors Session Chair: 64 th Biophysical Annual Meeting	2020
٠	Faculty Mentor for NSF RET Research Experience for High School Teachers 2	2019- 20
٠	National Science Foundation Panelist: Electronics, Photonics and Magnetic Devices	2018
٠	National Institute of Health Panelist: Cancer Biomarkers Study Section	2017
٠	Session Chair: 2nd Microfluidic Congress, Philadelphia, USA	2017
٠	National Science Foundation Panelist: Nano-Biosensing	2017
•	Symposium Chair: 9th Frontier in Biomedical Devices conference	2016
٠	Session Chair: 47th American Chemical Society Regional Meeting CERM	2016
•	Organizer Committee member: International Conference IEEE Nanotechnology	2016

Reviewer: Sensors, Analytical and Bioanalytical Chemistry, Nanoscale, 2016-23
Electrophoresis, Biomaterial Science, Chemical Engineering Science, ACS Nano

Professional Affiliations

- ▲ Faculty of Medical Scientist Training Program, UC College of Medicine
- Member of *Center for Stem Cell and Organoid Medicine (CuSTOM)* Cincinnati Children's Hospital
- Associate Member of Cincinnati Cancer Center (CCC)
- Active Member of UC Undergraduate Women in Science and Engineering (WISE)
- Member of IEEE-Engineering in Medicine and Biology Society (IEEE-EMBS)
- ▲ Member of American Chemical Society (ACS)
- Member of *Biomedical Engineering Society (BMES)*
- Member of *Biophysical Society*
- Member of International Society of Extracellular Vesicles (ISEV)
- Member of *IEEE Women in Science and Engineering*

Academic Advising and Mentoring

Current Postdoctoral and Graduate Students

- Manju Sharma, Postdoctoral Scholar since 2021
- Maksym Krutko, Ph.D. Candidate in Biomedical Engineering. Expected Graduation: 2024
- Maulee Sheth, Ph.D. Candidate in Biomedical Engineering. Expected Graduation: 2025
- Holly Poling, Ph.D. Student in Biomedical Engineering. Expected Graduation: 2026
- Yara Izhiman, Ph.D. Student in Biomedical Engineering, Expected Graduation: 2026
- Gregory Macke, M.Sc. Student in Biomedical Engineering, Expected Graduation: 2025

Former Graduate Students

- ▲ Leilei Shi, Ph.D. in Electrical Engineering 2021. Current Position: Assistant Professor (Tenure Track) College of Charleston.
- ◆ Yuqian Zhang, Ph.D. in Electrical Engineering 2020. Current Position: *Research Fellow at Mayo Clinic*.

- Ankit Rana, M.Sc. in Electrical Engineering 2019. Current Position: Associate Scientist II, Illumina Inc.
- Ann Wolf, M.Sc. in Electrical Engineering 2022. Current Position: *Engineer at Genetesis Inc.*
- ▲ Zachary Mularczyk, M.Sc. in Biomedical Engineering 2022. Current Position: Doctoral Student with US Department of Defense (DOD), U.S. Navy Naval Medical Research Unit-Dayton.
- ▲ Juntao Dong, M.Sc. in Electrical Engineering, Current position: Data Scientist at Foxconn Industrial Internet.
- Ahmet Kaynak, M.Sc. in Biomedical Engineering, Current position: *Ph.D. Candidate in Medicine at UC.*

Former Undergraduate and High School Students

- ▲ Ming Zeng, research assistant in EECS Co-Op program, July 2020- Dec 2020.
- August Kohls, research assistant in EECS Senior Design, Aug 2019- Aug 2020.
- Seyed Minhaj Shahid, research assistant in EECS Co-Op program, May 2019- Aug 2020.
- ▲ Nikki Ferneding, research assistant in EECS Co-Op program, Aug 2018- Jun 2019.
- ▲ Lindsey Lanzillotta, research assistant in BME, Senior Design, Aug 2018- Jun 2019.
- Avani Kabra, research assistant, Medical Student, Aug 2018- May 2020.
- ▲ Jacob Long, research assistant in EECS, Senior Design, Aug 2019- May 2020.
- ▲ Yuchen Zhang, research assistant in EECS, Senior Design, Aug 2019- May 2020.
- ▲ Lujing Xiong, research assistant in EECS, Senior Design, Aug 2019- May 2020.
- Sudarshan Pillai, research assistant in EECS Co-Op program, May 2016- Dec 2017.
- ★ Kathryn Suttling, research assistant in BME, Sep- Dec 2015.
- Alexia Gaines, research assistant from WISE program, May- Aug 2015.
- Tiffany Brooks, research assistant from WISE program, May 2015- July 2016.
- ▲ Hai Nguyen, research assistant in EECS Co-Op program, May- Dec 2015.
- Benjamin Warstler, high school student from Indian Hills High School, Jun- Aug 2016.

Graduate Students Thesis Committee Member

- Andrew Bryan (PhD in Chemical Engineering), Thesis Advisor: Prof. Greg Harris
- ▲ Jennifer Westphal (PhD in BME), Thesis Advisor: Prof. Greg Harris

\$	Adam Mchenry (PhD student in BME), Thesis Advisor: Prof. Jason Heikenfeld
•	Zach Watkins (MD/PhD student), Thesis Advisor: Prof. Jason Heikenfeld
•	Lauren Delong (PhD student in Chemistry), Thesis Adviser: Prof. Ashley Ross
•	Jacob Orkwis (PhD in Chemical Engineering), Thesis Advisor: Prof. Greg Harris
•	Jun Sunghyun (PhD student in BME), Thesis Advisor: Prof. Jason Shearn
•	Yuchan Yuan (PhD in EECS), Thesis Advisor: Prof. Jason Heikenfeld
•	Vinitha Thiyagarajan Upaassana (PhD in EECS), Thesis Advisor: Prof. Chong Ahn
•	Eric Frantz (PhD in EECS), Thesis Advisor: Prof. Andrew Steckl
•	Shima Dalirirad (PhD in EECS), Thesis Advisor: Prof. Andrew Steckl
•	Vishak Venkatraman (PhD in EECS), Thesis Advisor: Prof. Andrew Steckl
•	Zhizhen Wu (PhD in EECS), Thesis Advisor: Prof. Chong Ahn
•	Sthitodhi Ghosh (PhD in EECS), Thesis Advisor: Prof. Chong Ahn
•	Hua Gao (MSc in EECS), Thesis Advisor: Prof. Ian Papautsky
•	Adam Hauke (PhD in EECS), Thesis Advisor: Prof. Jason Heikenfeld
•	Alva Webster (MSc in EECS), Thesis Advisor: Prof. Jason Heikenfeld
•	Kiana Pickle (PhD student in Chemistry), Thesis Advisor: Prof. Ryan White
•	Amy Drexelius (PhD in BME), Thesis Advisor: Prof. Jason Heikenfeld
	Desai Darshini (PhD student in Cardiology), Thesis Advisor: Prof. Sadayappan