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Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue
organization level. One way that tissue organization is dysregulated is by changes in the
bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular
membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric
state of cancer cells is different from that of healthy cells, causing a disruption in the cellular
signaling pathways. This disruption or dysregulation affects all three processes of
carcinogenesis – initiation, promotion, and progression. Another mechanism that
facilitates the homeostasis of cell signaling pathways is the production of extracellular
vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular
communication within the tumor microenvironment (TME). Furthermore, the production
and release of EVs is altered in cancer. To this end, the change in cell electrical state and in
EV production are responsible for the bioelectric dysregulation which occurs during
cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis,
including the TME and metastasis. We also look at the major ion channels associated with
cancer and current technologies and tools used to detect and manipulate bioelectric
properties of cells.
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piezo channels
Abbreviations: EV, extracellular vesicle; TME, tumor microenvironment; Vmem, membrane potential; EF, electric field; SMT,
somatic mutation theory; TOFT, tissue organization field theory; HMEC, human mammary epithelial cell; MCF7, estrogen-
receptor-positive breast cancer cell line; MDA-MB-231, estrogen-receptor-negative breast cancer cell line; ECM, extracellular
matrix; EMT, epithelial mesenchymal transition; CAF, cancer associated fibroblast; GlyCl, glycine-gated chloride channel;
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INTRODUCTION

Carcinogenesis, also termed oncogenesis or tumorigenesis, is rooted
in twomajor theories or hypotheses, both significantly different from
one another. The somatic mutation theory (SMT), which has been
prevailing in cancer research for more than sixty years proposes that
the origin of cancer can be explained by an accumulation of several
DNAmutations in a single somatic cell. Tumor development is then
a multistep process where successive mutations produce
advantageous biological compatibilities (1). The SMT explains
many features of cancer such as hereditary cancers and the success
of gene-targeting cancer therapies (2). However, non-genotoxic
carcinogens which induce cancer without any DNA modifications
(3) and the absence of mutations in some tumors (4) contradict this
theory. Alternatively, the tissue organization field theory (TOFT)
proposed in 1999, hypothesizes that carcinogenesis is a problem of
tissue organization instead of having a cellular level origin. Here, the
carcinogenic agents disrupt the reciprocal interactions between cells
that maintain tissue organization, repair, and homeostasis, hence
creating altered microenvironments which allow the parenchymal
cells to exercise their ability to proliferate and migrate (5).

Bioelectric regulation is an important mechanism of cell
communication and dysregulation of this mechanism can result
into alterations in tissue organization, fitting the tissue organization
field theory of carcinogenesis. While bioelectricity has been
extensively studied in cells with neural origins, its role in non-
neural cell activity and functionality has only emerged more
recently. With advances in understanding the underlying
bioelectric mechanisms of cancer and development of molecular
tools to measure and control these electric fields, we are now able to
better identify the role of bioelectric signaling in carcinogenesis.
Another important mechanism that facilitates intercellular
communication for the maintenance of tissue homeostasis is the
production and release of extracellular vesicles (EVs) by cells of
different tissue types. Cancer-derived EVs play a role in all steps of
carcinogenesis by mediating the communication between cancer
cells and non-cancer cells as well as malignant cells and non-
malignant cells within the tumor microenvironment (TME) (6).
Furthermore, the production of EVs is aberrant during cancer
which in turn plays an important role in disturbing the
bioelectrical signaling pathways between cells.

Several review papers (7–10) focusing on the bioelectric control
of one or the other aspect of cancer, such as migration or metastasis,
have been published. In this paper, we provide a more extensive
review of bioelectric regulation in multiple cancer processes
including initiation, promotion, the tumor microenvironment,
and metastasis. We also look at the major ion channels
implicated in cancer and current technologies and tools used to
measure and manipulate bioelectric properties of cells in vivo.
BIOELECTRICITY AND ENDOGENOUS
ELECTRIC FIELDS – AN OVERVIEW

Membrane potential (Vmem) is an electrical property associated
with any cell, specific to its origin and function. The electric
Frontiers in Oncology | www.frontiersin.org 2
nature of the membrane potential produces endogenous electric
fields (EFs) due to the segregation of charges by molecular
machines such as pumps, transporters and ion channels that
are primarily located in the plasma membrane of the cell (11).
These transmembrane voltage gradients have been established to
control not only neural signaling via gap junctions, but also cell
proliferation, migration, differentiation, and orientation in both,
excitable and non-excitable cells (12, 13).

Depending on the presence of relative charges, all excitable
and non-excitable cells possess an electric gradient across their
plasma membrane (Figure 1A). When the cytoplasm becomes
more positively charged relative to the extracellular space, the cell
is said to be depolarized and will have a less negative Vmem.
When the cytoplasm becomes more negatively charged relative
to the extracellular space, the cell in said to be hyperpolarized
and will have a more negative Vmem (Figure 1B). It is worthwhile
to note that Vmem is not only a key intrinsic cellular property, but
also an integral part of the microenvironment where it acts both,
spatially and temporally, to guide cellular behavior (9). It does so
by enabling the cells to make decisions based on the states of
their neighbors (14). Physiological Vmem can range from -90 to
-10 mV, depending on the cell type and physiological state (13,
15). Furthermore, as Vmem is primarily established by ion
channels that are gated post-translationally, two cells that are
in the exact same genetic and transcriptional states could
theoretically be in very different bioelectric states (16).
BIOELECTRICITY IN
CANCER PROCESSES

Bioelectric properties of cells and the electrical state of cells in the
microenvironment are known to control several key behaviors of
relevance to cancer (17–24). Here we first introduce some major
ion channels implicated in cancer. Then we look at the role of
bioelectricity in cancer initiation and progression, the tumor
microenvironment, and migration and metastasis.

Ion Channels and Cancer
Ion channels are membrane proteins that create ionic
concentration gradients by regulating the flow of ions across
the plasma membrane. The primary function of ion channels is
to maintain cellular homeostasis by regulating the inward and
outward ion flux, but they are also higher order regulators of
many downstream molecular signaling pathways (7). The four
main ions that play a role in establishing the resting Vmem of a
cell are: Ca2+, Na+, K+, and Cl-. The Goldman equation links the
overall transmembrane potential to the concentrations and
permeabilities of various ion species. The resting potential
Vmem depends on the internal and external K+, Na+, and Cl-

concentrations, ambient temperature, and permeability of each
ion specie. Alterations in ion channel expression and activity are
associated with the initiation, proliferation, and metastasis of
cancer cells (21, 25). For instance, there is a host of ion channels
whose expression is dysregulated in cancer cells and have been
found to be associated with a metastatic phenotype (7). Here, we
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summarize major ion channels responsible for the disruption of
homeostasis and aberrant activation of downstream signaling
pathways in cancer including voltage-gated cation channels
(CaV, NaV, KV), mechanosensitive cation channels, transient
receptor potential (TRP) channels, and chloride channels
(CLCs). Several review papers focusing extensively on ion
channels implicated in cancer can be found in literature (26–
29). It is worthwhile to note that disruption in expression of these
ion channels leads to deregulation in a host of different signaling
pathways in cancer (27–30). Prominent ones include the
mitogen-activated protein kinase (MAPK) pathways, ERK and
JNK signaling pathways, Wnt/ß-catenin pathway, PI3K/Akt
pathway, Notch signaling, and the Rac and Rho pathways.

Calcium Channels
Voltage-gated calcium channels (VGCCs) and transient receptor
potential (TRP) ion channels are primary channels facilitating
Ca2+ ion diffusion. VGCCs are present in human breast cancer
cells but not in normal human mammary epithelial cells
(HMECs) (31). Berzingi et al. studied the effect of calcium ions
on cell proliferation. Upon 5 days of culture, it was found that
MCF7 breast cancer cells showed almost no growth in a culture
medium without Ca2+ ions compared with cells growing to
nearly 100% confluence in a medium containing 2 mM Ca2+

ions. Furthermore, blocking external Ca2+ ions from entering the
cell through voltage-gated calcium channels using Verapamil
indicated that cell growth was substantially inhibited in MDA-
MB-231, breast cancer cells (32). The intracellular calcium
concentration is also integral for cancer cell metastasis since it
regulates the cell cytoskeletal dynamics, protease activity, cell
Frontiers in Oncology | www.frontiersin.org 3
volume, and pH – all of which play a role in migration and
invasion of cancer cells (33–36). Calcium is also involved in
driving ECM degradation and cell invasion by promoting
epithelial-mesenchymal transition (EMT) pathways and the
activity of matrix metalloproteinases (37, 38). Furthermore,
multiple TRP channels are regulated differently in various
cancers. Expression levels of TRPC3 in some breast and
ovarian tumors (39) and TRPC6 in breast, liver, stomach
cancers and in glioma are elevated (40). In non-small-cell lung
carcinoma cells, Ca2+ entry mediated by TRPC1 and its
associated signaling was found to activate the Pl3K/Akt and
MAPK downstream pathways and simulate proliferation (41).
Some TRP channels including TRPC1 (42), TRPC3 (43), TRPC6
(44–46), TRPM2 (47–49), and TRPM8 (50, 51) also simulate
apoptosis by increasing Ca2+ activity. Consequent increase in
TRPC6-mediated Ca2+ entry has also been found to alter the
Notch pathway, leading to tumorigenesis in human glioblastoma
multiforme (GBM) and GBM-derived cell lines (52). TRPV4 is
also a critical regulator of the Rho signaling pathway involved in
cancer cell adhesion and migration (53).

Sodium Channels
Cancer cells can effectively use Na+ flux to indirectly promote a
metastatic phenotype. For instance, changes in Na+ flux can
create localized areas of depolarization that can drive the
movement of Ca2+ and H+ ions. Activity of Na+/Ca2+

exchangers located in the plasma membrane of cells has also
been linked to favor ECM degradation and cell invasion, as has
been demonstrated in MDA-MB-231 breast cancer cells that
overexpress a voltage gated sodium channel (VGSC) (54). The
A B

FIGURE 1 | (A) Polarization of cells based on cell type. Excitable cell such as neurons have a membrane potential of -90 mV. Non-excitable cells such as HMEC:
Human Mammary Epithelial Cell and MCF7: Estrogen-receptor-positive breast cancer cell line are at -60 mV and -13 mV respectively. (B) Depolarized cell state (left)
indicated by a more positive charge in the cytoplasm relative to the extracellular space. Hyperpolarized cell state (right) indicated by a less positive charge in the
cytoplasm relative to the extracellular space.
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expression of NaV1.7 also promotes cellular invasion at the
transcriptional level by epidermal growth factor (EGF) and
EGF receptor (EGFR) signaling via the ERK1/2 pathway (55).
In colon cancer cells, NaV1.5 activity and the subsequent
depolarization have been found to play a role in the induction
of invasion-related genes through the MEK, ERK1/2 pathway
(56, 57). Furthermore, a sodium-channel SCN5A has been
identified as a key regulator of a genetic network that controls
colon cancer invasion (57). The activity of some sodium channels
has also been shown to further simulate the expression of more
sodium channels in prostate and breast cancer cell lines. This
allows the cells to substantially increase ion flux by creating a
positive feedback loop of channel activity-induced channel
expression (58). Finally, changes in the intracellular Na+

concentration can also alter cellular pH (10). A decrease in the
pH surrounding a tumor is known to influence cell adhesion via
the formation of integrin-mediated focal adhesion contacts
(59–61).

Potassium Channels
K+ ions predominantly move from the intracellular to
extracellular space through their channels to maintain the
steady state resting potential of a cell. K+ indirectly affects the
Vmem by driving the entry of Ca2+ into the cell. At the same time,
the proliferation of some tumor cells is dependent on voltage-
gated potassium channels (62–67) that alter cell volume by
affecting K+

flow. A variety of tumor cells express KV10.1 (68,
69) or KV11.1 (HERG) (70) or both channels. The K+ channel
EAG has been found to be expressed in 100% of cervical cancer
biopsies analyzed and overexpression of EAG in human cells has
been shown to increase cell proliferation in culture (71, 72).
Furthermore, overexpressing K+ channels in breast cancer cells
has been found to drive cell migration mediated by cadherin-11
and MAPK signaling (73). Calcium-dependent K+ channel
KCa3.1 also promoted proliferation by directly interacting with
ERK1/2 and JNK signaling pathways (74). Finally, Ca2+ flow
through TRPM8 regulates activity of Ca2+-sensitive K+ channels
such as KCa1.1, which plays a role in migration (75, 76). In breast
cancer cells, overexpression of TRPM8 increased the metastatic
potential via activation of the AKT glycogen synthase kinase-3 ß
(GSK-3ß) pathway (77).

Chloride Channels
Chloride is the main anion that accompanies the transport of
cations such as calcium, sodium, and potassium. Chloride
channels play an important role in cancer cell migration due to
their role in maintaining cell volume (78). Cl- channels have been
revealed to have a role in glioblastomas from studies in glioma
cell lines (79, 80). Studies of human prostate cancer cell lines
have also shown chloride channels to play a role as key regulators
of proliferation through cell size regulation (81). Chloride ion
channel-4 Cl-/H+ exchanger has been found to enhance
migration, invasion, and metastasis of glioma and colon cancer
cells by regulating the cell volume (65). For instance, genetic
knockdown of ClC-3 has been found to substantially reduce
migration in glioma cells (82).
Frontiers in Oncology | www.frontiersin.org 4
Piezo Channels
Piezo channels are non-selective Ca2+-permeable channels
whose gating can be simulated by several mechanical stimuli
affecting the plasma membrane, including compression,
stretching, poking, shear stress, membrane tension, and suction
(83–85). A recent study has also demonstrated that Piezo
channels show significant sensitivity to voltage cues and thus
can also be viewed as important members of the voltage-gated
ion channel family (86). Two major piezo channels – Piezo1 and
Piezo2 have been identified which are mainly expressed in
different tissues. Piezo channels are overexpressed in several
cancers, such as breast, gastric, and bladder, whereas in other
cancers, their downregulation has been described. Several studies
conducted in vitro and in vivo have demonstrated that the
activation of Piezo channels can drive a Ca2+ influx, thus
modulating key Ca2+-dependent signaling pathways associated
with cancer cell migration, proliferation, and angiogenesis (87).
Overexpression of Piezo1 has also been found to promote
prostate cancer development through the activation of the Akt/
mTOR pathway (88). Furthermore, the mechanistic effects of
Piezo2 are associated with a Ca2+-dependent upregulation
of Wnt11 expression which enhances the angiogenic potential
of endothelial cells in cancer via ß-catenin-dependent
signaling (89).

Cancer Initiation and Promotion
Resting potential established by ion channel and pump proteins
is important for determination of differentiation state and
proliferation. One way that carcinogenesis occurs is due to the
disruption of electrical gradients, or the mechanisms by which
they are perceived by cells (24). Vmem is an important non-
genetic biophysical aspect of the microenvironment that
regulates the balance between normally patterned growth and
carcinogenesis (7). Cancerous and proliferative tissues are
generally more positively charged or depolarized than non-
proliferative cells (90, 91). Vmem values from -10 to -30 mV
correspond to more undifferentiated, proliferative, and stem-like
cells (92). For instance, the resting membrane potential in
normal human mammary epithelial cells (HMEC) is -60 mV.
This value goes up to -13 mV in breast cancer cells isolated from
patients (93). Berzingi et al. experimentally compared Vmem in
HMEC and two different invasive ductal human carcinoma cell
lines, MCF7 (estrogen-receptor-positive) and MDA-MB-231
(estrogen-receptor-negative). The results indicated that MCF7
and MDA-MB-231 cells are 30.4 mV and 27.3 mV more
depolarized in comparison to HMEC cells, respectively. It was
also seen that HMEC grew at a much slower rate compared to
MCF7 and MDA-MB-231 (32).

Lobikin et al. used a Xenopus tadpole model to confirm the
role of ion flow in oncogenesis in vivo by investigating the
consequences of depolarizing select cell groups (67). Embryos
were exposed to glycine-gated chloride channel (GlyCl) activator
ivermectin to control the membrane potential of a widely
distributed, sparse population of cells expressing the GlyCl
channel. The membrane potential of these specific cells could
be set to any desired level by manipulating external chloride
March 2022 | Volume 12 | Article 846917
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levels following ivermectin treatment. Tadpoles whose cells were
depolarized were seen to exhibit excess melanocytes with a much
more arborized appearance and colonize areas normally devoid
of melanocytes, such as around the eyes and mouth. It was also
shown that depolarization induces the up regulation of cancer
relevant genes such as Sox10 and SLUG (94). Furthermore,
susceptibility to oncogene-induced tumorigenesis was shown to
be significantly reduced by forced prior expression of
hyperpolarizing ion channels indicating that bioelectric
signaling of the cellular microenvironment can both, induce
and suppress, cancer-like cell behavior.

Vmem has been suggested as a cancer biomarker due to its role
as an early indicator of tumorigenesis and is associated with
tumors of diverse molecular origin (95–98). Induced tumor like
structures (ITLS) can be formed in Xenopus and zebrafish
embryos by mis-expressing mammalian oncogenes (Gli1, Xrel3
and KRASG12D) and mutant tumor suppressors (p53Trp248).
ITLS’s are formed as a result of genetic interference with
signaling pathways altered in several types of cancer including
basal cell carcinoma, lung cancer, leukemia, melanoma, and
rhabdomyosarcoma (99–102). Fluorescence reporters of Vmem

in the injected animals have been found to reveal unique
depolarization of tumors and increased sodium content
compared to healthy tissues (7, 103). Moreover, depolarized
foci have a higher success rate in predicting tumor formation
as compared to cancer specific antigen level in the serum. For
instance, Chernet and Levin found that depolarized foci, while
present in only 19-30% of oncogene-injected embryos, predict
tumor formation with 50-56% success rate as compared to
prostate specific antigen level in the serum, which when used
as a biomarker for prostate cancer, has a 29% predictive value
(104, 105).

Recently, Carvalho developed a computational model of
cancer initiation, including the propagation of a cell
depolarization wave in the tissue under consideration (106).
This model looks at an electrically connected single layer tissue
in two and three dimensions and simulates ion exchange
between cells as well as between cells and the extracellular
environment. It was seen that a polarized tissue with cells in
quiescent state tends to change state if a large enough
perturbation changes its homeostatic conditions, such as a
carcinogenic event. The induced depolarized state is able to
then propagate to neighboring cells in a wave like manner. The
developed model shows the importance of community effects
associated with cell electrical communication leading to both,
short- and long-range influences and ultimately, cancer.

The Tumor Microenvironment
The microenvironment functions to guide the cell through space
and to direct tissue growth through time. It also plays a significant
role in the physiological outcome of a givenVmem input. The tumor
microenvironment (TME) is a complex entity and consists of
multiple cell types embedded in the extracellular matrix (ECM),
including immune cells, endothelial cells and cancer associated
fibroblasts (CAFs) which communicate with cancer cells and with
other CAFs during tumor progression (107). One way this
Frontiers in Oncology | www.frontiersin.org 5
communication is mediated is by a plethora of bioactive
molecules, including proteins, lipids, coding and non-coding
RNAs, and metabolites, which are secreted into extracellular
vesicles (EVs) (108, 109).

The mechanical microenvironment impacts bioelectric
regulation and cell proliferation (9). An early indication of this
were studies in the late 1900s which found that cells within a low cell
density (fewer cell-cell contacts) exhibited reduced proliferation
(110) and that cells in a confluent monolayer are more
hyperpolarized than individual cells (111, 112). Similarly,
chemical components of the cellular microenvironment have the
ability to impact cell phenotype. Factors such as hypoxia (113) and
pH (114) have been demonstrated to drive cancer progression.
Moreover, hypoxic tumors exhibit more aggressive phenotypes.
Tumor cells under hypoxia can produce a secretion partly in the
form of EVs that modulates the microenvironment to facilitate
tumor angiogenesis and metastasis (115). Vmem thus functions at
the interface of chemical and mechanical signals by creating an
electrical gradient across cells, which in turn gates voltage-sensitive
channels. This creates a tightly connected communication pathway
between a cell and its microenvironment (9, 116–119).

The key components of the mechanical microenvironment
(Figure 2) are solid and fluid pressure, substratum stiffness (120–
128) tissue geometry, and mechanical stress (129–131). These
components of the physical microenvironment are primarily
dependent on mechanosensitive calcium channels CaV3.3 (132,
133). Cells have the ability to sense the surrounding substratum
by applying force through actomyosin motors in stress fibers
linked to focal adhesions (134). Varying the substratum stiffness
has been demonstrated to influence cellular behaviors including
differentiation (122), apoptosis (126), proliferation (125), gene
expression (135–137), migration (138), cell stiffness (139), and
epithelial-mesenchymal transition (EMT) (127). Along with
microenvironments of varying rigidity, cells also experience
mechanical stress due to the dense packing of neighboring
cells. Cell-cell contacts are critical for propagation of
bioelectric signals via the transport of ions through gap
junctions (140–142). The normal breast epithelium cell line
MCF10A was demonstrated to respond differently to an EF in
vitro depending on the confluency of the cell culture (143). The
study observed that clustered cells are more sensitive to an EF
due to increased cell-cell contacts.

Physical signals from the Vmem of the microenvironment also
contribute to tumorigenesis (9). Furthermore, pressure activates
oncogenic factors such as p38, ERK, and c-Src which are
involved in the regulation of cell proliferation, differentiation,
and apoptosis (132). Tumors in vivo are under higher pressure
and are also stiffer than the surrounding tissue which creates a
microenvironment that promotes cell proliferation (133).
Increased pressure also enhances the invasiveness of tumor
cells (121). Additionally, a key communication pathway
between cells and their ECM is Integrin signaling pathway
which regulates cytosolic Ca2+ levels (144). These cytosolic Ca2
+ concentrations play an important role in cancer-related
processes such as EMT (38), metastasis (21), and apoptosis
(126, 145). For instance, inducing EMT in human breast
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cancer cells has been shown to upregulate cytosolic calcium
levels (38).

Cell Migration and Metastasis
The dissemination of primary tumor cells to secondary organs is
called metastasis. This involves cancer cells breaking away from
the primary tumor, traveling through blood or lymphatic
systems, and forming secondary or metastatic tumors in other
parts of the body. Metastasis is a multi-step process (Figure 3)
and involves the following events: local invasion to surrounding
tissues, intravasation into the vasculature or lymphatics (where
they are called circulating tumor cells or CTCs), survival and
circulation in the vessels, and extravasation and colonization in a
secondary organ (where they are called disseminated tumor cells
or DTCs) (146, 147). Bioelectricity mediates many of the normal
cell functions which are disrupted in metastasis. Factors such as
ion channel expression, Vmem, and external EFs have been
determined to regulate invasion and metastasis. Furthermore,
the migration of cancer cells out of the primary tumors into local
tissues through various physical barriers is driven by
components of the local tumor microenvironment and
executed by complex signaling pathways in the cell (10).
Frontiers in Oncology | www.frontiersin.org 6
Cues within the TME can promote local invasion (148). For
instance, an ECM protein fibronectin can attract breast cancer
tumor cells to the vasculature via haptotaxis (directional migration
in response to substrate-bound cues) to promote dissemination.
During tumor invasion, constant communication occurs between
tumor cells and surrounding stromal cells via extracellular vesicles
(EVs) (115). Even upon entering a secondary tissue, the transition of
a DTC into an overt metastasis is highly dependent on the local
microenvironment of this organ (10). Hence, the formation of a
supportive premetastatic niche, composed of ECM and resident
immune cells is essential to provide nutrients and survival signals
that drive DTC survival and outgrowth. Recent work suggests that
tumor cells may be able to prime the premetastatic site from a
distance before colonization to create a more favorable niche, for
example, by secreting exosomes, a subpopulation of EVs (6).
Furthermore, even within cancer cells, there is variability in the
amount of depolarization. A more depolarized Vmem is associated
with a higher metastatic potential and forced hyperpolarization of
cells can reduce their migration and invasiveness (24, 141, 149, 150).

To study the effect of EFs on cell galvanotaxis, Zhu et al.
employed unique probe systems to characterize cancer cell
electrical properties and their migratory ability under an EF (151).
FIGURE 2 | Key components of the tumor microenvironment (TME) which comprises of multiple cell types including cancer cells, immune cells, endothelial cells, and
cancer associated fibroblasts. This includes mechanical components such as fluid pressure, substratum stiffness, mechanical stress, cell-cell, and cell-matrix
interactions. Also shown are some chemical components of the microenvironment such as pH, temperature, and hypoxic core of the tumor. Cell-cell and cell-TME
communication is mediated by a variety of bioactive molecules during carcinogenesis.
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FIGURE 3 | Overview of the five-step metastatic cascade involving local invasion, intravasation into surrounding vasculature, circulation, extravasation, and finally
colonization in a secondary location. Also shown is the formation of a pre-metastatic niche that supports the survival of disseminated tumor cells (DTCs) into a
successful metastasis. Exosomes, a subpopulation of EVs play a primary role in carrying information from the primary site to the secondary site or site of metastasis,
especially to form the pre-metastatic niche.
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It was found that tumors established from 4T1, a triple-negative
murine breast cancer cell line, produced heterogeneous
intratumor potentials causing a flow of endogenous EFs
inside and outside of the tumors, which may in turn affect
cell migration behavior and ultimately contribute to cancer
metastasis. Moreover, tumor electric potentials were found to
increase with increase in tumor size, which is an important
factor since the primary tumor size has been reported to be
linked to the metastatic potential (152, 153). Finally, it was also
found that metastatic sublines (m4T1) from lung, heart, axillary
lymph node and spleen showed different galvanotaxis
thresholds. For instance, parental 4T1 and lung metastatic
cell lines were found to respond to EFs as low as 50 mV/mm,
while other metastatic sublines showed an anodal migration in
a field of 100 mV/mm or higher. Additionally, the migration
speeds also varied among different metastatic sublines. Cancer
cell monolayers were found to have a higher migration
persistence (defined as the ratio of displacement to trajectory
length) under EFs than that of isolated cells, suggesting that
cancer cells migrated more linearly in a certain direction when
responding to EFs collectively.

Interestingly, bioelectric factors override most chemical
gradients and other cues in a multi-cue environment during
cell migration (8). Lobikin et al. investigated a cell population
termed as “instructor” cells which when depolarized, is able to
direct the activity of an entirely different set of cells (7). The
“instructor” cells induce metastatic phenotype in normal
melanocytes by serotonergic signaling, a mechanism which
mediates long-range bioelectric signaling. Furthermore,
instructor cells also disrupt blood vessel patterning upon
depolarization. The melanocytes were then found to acquire
three properties commonly associated with metastasis – hyper-
proliferation, a highly dendritic morphology, and invasion into
tissues such as blood vessels, gut, and neural tube. This data
illustrated the power of depolarized Vmem as an epigenetic
initiator of widespread metastatic behavior in the absence of a
centralized tumor.
APPLICATIONS

Current Devices, Materials
and Technologies
Molecular-resolution tools have recently been developed for real-
time detection and manipulation of bioelectric properties in vivo
(91, 154). An important component of such investigations is the
ability to track spatio-temporal distribution of Vmem gradients in
vivo, over significant periods of time.

Detection of Bioelectric Properties
Microelectrodes are a common tool used to measure the
electrophysiological characteristics of cells and are extremely
powerful for single cell measurements. For instance, Zhu et al.
used glass microelectrodes to measure intratumor potentials in
subcutaneous tumors established from a triple-negative murine
cancer cell line (4T1) (151). However, measurements
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corresponding to multicellular areas and volumes are
constrained by the smaller size of these electrodes.
Furthermore, the sample under study needs to be kept
perfectly still (154). Fluorescent bioelectricity reporters are a
more recent development which has facilitates measurement of
electrophysiological properties when it is not feasible to use
microelectrodes. These dyes can be used to achieve subcellular
resolution, measure many cells simultaneously in vivo, and to
track bioelectric gradients over long period of time despite cell
movements and divisions (154). Chernet and Levin utilized
voltage-sensitive fluorescent dyes to non-invasively detect areas
of depolarization in oncogene-induced tumor structures in
Xenopus larvae (24). A few other tools for the characterization
of bioelectrical events are highly sensitive ion-selective
extracellular electrode probes (105, 155) that reveal ion flux at
the cell membrane, reporter proteins (156–159) and techniques
that report individual ion species content such as protons (160)
and sodium (161). Bioelectronic sensors or biosensors can also
be used to sense electric fields, ionic concentrations, and
biological markers (162–167). Based on the type of sensor,
both intracellular and extracellular recordings of a single cell
or a group of cells can be measured. A common transistor
biosensor platform used for extracellular recordings is the
organic electrochemical transistor (OECT) which is inherently
sensitive to ionic species and external electric fields (14). The
OECT is typically made of a poly(3,4-ethylenedioxythiophene):
polystyrene sulfonate (PEDOT : PSS) mixture and has been
implemented for recording of electrochemical gradients in non-
excitable cells such as Caco-2 as well as excitable cells (168).
Meanwhile, silicon nanowires are suitable for crossing the cell
membrane and are commonly used for intracellular readings.
These nanowires are synthesized with spatially controlled
electrical properties. A nanoscale field effect transistor (NFET)
is then created on an individual nanowire by varying the doping
levels. NFETs allow localized and tuneable 3D sensing and
recording of single cells and even 3D cellular networks. By
having a three-dimensional probe presentation, NFETs
overcome a major limitation of most traditional nanoelectronic
devices which have a more planar design. Tian et al. used three-
dimensional NFETs as localized bioprobes for intracellular
readings in cardiomyocytes (169). While these methods are
excellent tools for measuring cell electrical properties, tools
that can manipulate these properties are essential to study the
effects of altering cell states.

Manipulation of Bioelectric Properties
Bioactuators are a class of devices that can be used to modify cell
behavior by delivering directly biophysical signals such as
electrophoretic delivery of ions and small molecules targeting
specific cell locations (14). Additionally, a variety of
nanomaterials have been developed for reading and writing
bioelectric cues in tissue. These include biocompatible
piezoelectric materials and nanoparticles that alter the resting
potential of cells by contact, without the use of transgenes (170–
173). Warren and Payne determined that nanoparticles with
amine-modified surfaces induced significant depolarization in
both, Chinese Hamster Ovary (CHO) cells and HeLa cells (173).
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Conductive polymers are another class of materials that can
stimulate cells or tissue cultured upon them (174–176) by
applying an electrical signal. Conductive polymers used in
tissue engineering include conductive nanofibers, conductive
hydrogels, conductive composite films, and conductive
composite scaffolds fabricated using methods such as
electrospinning, coating, or deposition by in situ polymerization
(177). For instance, Jayaram et al. used PEDOT : PSS conducting
polymer microwires to depolarize cells and achieve a more positive
membrane potential in E. coli cells (170). Thourson and Payne also
demonstrated the use of PEDOT : PSS microwires to control action
potentials of cardiomyocytes (178). Conductive polymer microwires
thus provide a minimally invasive platform to control electrical
properties of cells with high spatial precision. Detailed reviews on
conductive polymers have been previously published (177, 179).

As mentioned previously, treatment with ivermectin is
another way to control the transmembrane potential of a select
group of cells by manipulating of endogenous chloride channels
Frontiers in Oncology | www.frontiersin.org 9
(Figure 4A). Ivermectin targets GlyR-expressing cells and hence
opens their chloride channels. Chloride ions can then be made to
enter or exit the GlyR-expressing cells by manipulating the
external chloride levels, thus controlling their transmembrane
potential (7). For instance, a low level of chloride in the external
medium would cause chloride ions to exit the cell and into the
medium, hence depolarizing the cell. Lobikin et al. employed this
method in frog models to regulate the membrane potential of a
specific group of cells expressing GlyCl channels to desired levels
and study the consequences on metastasis and tumorigenesis
in vivo.

Another potential way to manipulate the bioelectric properties
of cells is by controlling the mechanosensitive Ca2+-permeable
Piezo channels which have emerged as major transducers of
mechanical stress into Ca2+ dependent signals. These
mechanosensitive Piezo channels expressed on the plasma
membrane are gated by various mechanical stimuli such as
stiffness, compression, tension forces, and shear stress. Channel
A

B

FIGURE 4 | Manipulating bioelectric properties of cells (A) Manipulation of endogenous chloride channels as a means of manipulating Vmem of a select group of
cells. Treatment with ivermectin causes chloride channels in GlyR-expressing cells to open. External chloride levels are then manipulated to regulate movement of
chloride flux into or out of the cytoplasm (B) Piezo1 and Piezo2 are mechanically activated cation channels. Application of a mechanical force causes the central pore
to open, allowing an influx of positive charge into the cell.
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activation then allows a Ca2+ influx into the cytoplasm which then
mediates the cell polarity (Figure 4B). Piezo1 may also be
pharmacologically activated by agonists such as Jedi1, Jedi2 and
Yoda1 or inhibited by channel pore blockers, competitive
antagonists, and peptides such as Ruthenium Red, GsMTx-4,
Dooku1 and Aß peptides which distort the membrane
mechanical properties (87). Han et al. demonstrated that
activation of Piezo1 via mechanical stimuli in 1 mm using a
heat-polished glass probe controlled by a piezo electric device or
via agonist Yoda1 mediated Ca2+ influx in pancreatic cancer cells,
resulting into a more depolarized state (88).

Extracellular Vesicles and Electricity
Extracellular vesicles (EVs) facilitate inter-cellular communication
via delivery of proteins and nucleic acids, including microRNA
(miRNA) and mRNA (180). EVs-mediated communication is vital
during the establishment of planar cell polarity and the
developmental patterning of tissues (181). EVs are particularly
enriched in the tumor microenvironment (182, 183) and as
mentioned in the previous sections of this paper, they play a
special role in cancer development and progression. In a recent
study, Fukuta et al. demonstrated that external stimuli such as low
levels of electric field treatment that activate intracellular signaling
would likely increase exosome secretion from the cells. It was seen
that an electric field of 0.34 mA/cm2 increases the secretion of these
EVs from cultured cells of murine melanoma B16F1 and murine
fibroblast 3T3 Swiss Albino without compromising their quality
(180). These results together indicate that the bioelectric
dysregulation or depolarization of cells that occurs during cancer
may be responsible for the upregulation of EVs in the cancer tumor
microenvironment. At the same time, the increase in production of
EVs plays a role in disrupting the bioelectric homeostasis, forming a
feedback loop. The change in cell state and EV production along
with the interdependence of the two are major mechanisms
responsible for the bioelectric dysregulation of cancer.
CONCLUSIONS

Bioelectric signaling is a growing field of study that takes us a
step closer to understanding cancer as a disease, all the way from
initiation to metastasis. A lot is known about cancer and its
biology as per the somatic mutation theory. On the other hand,
the role of electric fields in cancer processes, while strongly
established over the last few decades, needs further investigation.
Understanding the bioelectric mechanisms underlying cancer is
Frontiers in Oncology | www.frontiersin.org 10
especially important since it will allow us to develop new
biomedical and bioengineering tools and techniques as per the
tissue organization field theory. These new engineering tools,
along with the existing biological knowledge will enhance our
understanding of cancer and enable the development of novel
treatments for patients.

Another exciting area of study is the interplay between the
bioelectric dysregulation and enhancement of extracellular
ve s i c l e s (EVs) w i th in the contex t o f the cance r
microenvironment. It has been well established that EVs play a
significant role in facilitating the signaling pathways involved in
all processes of carcinogenesis. This paper provides a detailed
review of the current knowledge about bioelectric dysregulation
that underlies different processes of cancer. However, little is
known about the interdependence of these two mechanisms.
Furthermore, EVs, especially exosomes, have been proven to
have a role in therapeutic strategies for cancer. Understanding
this crosstalk will not only enhance our knowledge of cancer, but
a l so he lp deve lop effic ient exosome-based cancer
immunotherapies and drug delivery vehicles.
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